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Scope of today’s talk

We can usually do a lot better than binary SIRS for not much more effort, particularly for 
disease with separations of timescales between infection and immune dynamics.

- any acute infectious disease (polio, measles, RSV, rotavirus, acute typhoid, covid, flu, 
dengue…)

- Outcomes on different scales (HPV, TB, typhoid carriers, long-COVID, EBV->MS…)

Less applicable: anything where immune and pathogen dynamics interact and show 
predator-prey-like dynamics on similar scales

- Malaria, HIV…

Not gonna talk about cross-immunity or host heterogeneity today



Key principles for better immunity modeling

1. Immunity always means multiple things

2. Protection is always a function of correlates, known or not

3. Almost all immunity is leaky

4. Waning is never exponential

5. You probably don’t care about priming and boosting
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Key principles for better immunity modeling

1. Immunity always means multiple things

2. Protection is always a function of correlates, known or not

3. Almost all immunity is leaky

4. Waning is never exponential

5. You probably don’t care about priming and boosting

If you think through all this before running a model, your work will be better. 
(Even if you end up doing the thing you usually do anyway.)

If you advise PST partners to expect more from modeling grantees, they’ll better 
understand the anticipatable impacts and uncertainties in their strategies.



1. Immunity always means multiple things
• Immune to what?

– Infection 
– symptoms 
– hospitalization 
– death
– carrier status
– long-term sequela
– transmitting if infected
– …

• Why?
– Different outcomes are conditionally dependent on each other
– Different consequences in different body compartments
– Outcomes often depend on other covariates



Vaccine efficacy is many things

Relative Risk 𝑅𝑅𝑜𝑢𝑡𝑐𝑜𝑚𝑒 =
𝑃 𝑜𝑢𝑡𝑐𝑜𝑚𝑒 𝑣𝑎𝑐𝑐𝑖𝑛𝑎𝑡𝑒𝑑

𝑃 𝑜𝑢𝑡𝑐𝑜𝑚𝑒 𝑛𝑜𝑡 𝑣𝑎𝑐𝑐𝑖𝑛𝑎𝑡𝑒𝑑

Vaccine Efficacy is 
relative risk 

reduction (in a population 

with identical exposure)
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Vaccine efficacy modeling recommendations

• Clinical trials often report only one endpoint, which is rarely the only endpoint 
relevant for our work.

• Use your knowledge of biology and the policy landscape to decide thoughtfully

– Can I safely assume the VE in my model is the one in the paper(s)?

– If not, do the data exist re-estimate VE appropriately for my needs?

– Either way, do I have to propagate the uncertainty in the unmeasured 
aspects of vaccine protection to get the policy advising right?

• Help your PST partners understand when types of VE not measured in a typical 
clinical trial will matter when a successful vaccine is rolled out.

– Motivate better trials.



2. Protection is always a function of correlates, known 
or not

Plotkin and Gilbert 2010

Correlates of Protection are always continuous quantities, and because immunity is always leaky, VE 
always varies continuously with CoP.

Thus it is really annoying that most studies focus on thresholds of protection as a binary classifier.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9912984/


Example CoP: symptomatic COVID, AZ vaccine
Feng et al 2021

𝑉𝐸𝑠𝑦𝑚𝑝 𝑖𝑛𝑓 𝑁𝐹50 = 1 − 𝑅𝑅𝑠𝑦𝑚𝑝 𝑖𝑛𝑓 𝑁𝐹50
𝑅𝑅𝑠𝑦𝑚𝑝 𝑖𝑛𝑓 𝑁𝐹50 =

𝐴𝑅𝑣𝑎𝑥 𝑁𝐹50

𝐴𝑅𝑛𝑜 𝑣𝑎𝑥

https://www.nature.com/articles/s41591-021-01540-1


Modeling VE with a Correlate of Protection

Vaccinology studies 
(usually)

log 𝑅𝑅𝑜𝑢𝑡𝑐𝑜𝑚𝑒 = 𝛼 − 𝛽 log CoP

𝑉𝐸𝑜𝑢𝑡𝑐𝑜𝑚𝑒 = 1 − 𝑒𝛼 CoP −𝛽

VE can go negative. 
Useful in studies since you have to 

watch if the vaccine is harmful.
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biologically if you know VE>0 always.
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If you suspect the range 
of possible VE is 

narrower than 0 to 1 
for any value of the CoP

logit
𝑉𝐸𝑜𝑢𝑡𝑐𝑜𝑚𝑒

𝑉𝐸𝑚𝑎𝑥 − 𝑉𝐸𝑚𝑖𝑛

= 𝛼 + 𝛽 log CoP

Probably already doing nonlinear 
regression. But think carefully about 
identifiability and if you’re not doing 

something else wrong.

CoPs are imperfect. 
Biology is weird sometimes. 



Covid example where the 
nonlinear regression helps
• Jamie Cohen et al 2023

• Conditional cascade fits to VE for infection, symptoms, 
and severe disease

– Intercepts for vaccine and infection

• Useful things you don’t get if you just do independent 
regressions

– Marginal efficacies for symptoms and severe disease 
asymptote above 0, consistent with existence of 
other as-yet-unidentified CoPs

– Waning models don’t go to zero for severe disease 
(big problem with some others)

– No dumb arguments about “efficacy against severe 
disease doesn’t wane” vs “no, it does!”

https://ncbi.nlm.nih.gov/pmc/articles/PMC10015104/


3. Almost all immunity is leaky

• Immunity is almost always a function of dose. 

• It is almost always possible in principle to deliver a 
big enough dose in the right way to overcome 
immunity

• Binary (”sterilizing”) immunity is an approximation 
whose validity depends on

– Setting

• Force of infection, “vaccine take”, delivery, 
cold chain, co-morbidities etc

– Time since vaccination (waning)

– Disease outcome being considered

Famulare et al 2016

https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.2002468


Recommendations to deal with leaky immunity
• If your thoughtful understanding of biology and policy says you can get away with it, 

modeling immunity as binary is great.

• If you can’t get away with binary immunity, build a leaky model, fit it to data (more 
ahead), and propagate policy-relevant uncertainty.
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• If your thoughtful understanding of biology and policy says you can get away with it, 

modeling immunity as binary is great.

• If you can’t get away with binary immunity, build a leaky model, fit it to data (more 
ahead), and propagate policy-relevant uncertainty.

• Observations: I haven’t done simulation studies (should! will?¡), but 

– binary with waning is often fine when modeling large pops without age structure

– A priori it’s a problem in highly-structured populations with complex immune 
histories and contact patterns (like households)

• You can be saved if 𝑉𝐸𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛|𝑖𝑛𝑓 is high even if 𝑉𝐸𝑖𝑛𝑓 isn’t, but the 

reliability of that implicit assumption is sensitive to contact patterns and FOI



Good default: approximate beta-Poisson with immunity

Simplest 
sensible dose 

response model
𝑃 infected dose, CoP  = 𝑝𝑚𝑎𝑥 1 − exp −

dose

𝐷

All infectious units and people 
are identical.
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𝛽

Τ−𝛼 CoP 𝛾

Interpretation: infectious units 
and people vary, and immunity 
reduces probability infectious 

unit is viable
𝛼 ≪ 𝛽 is typical



Modeling the effects of exposure dose on VE

Dose response 
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𝛽

Τ−𝛼 CoP 𝛾

Interpretation: infectious units 
and people vary, and immunity 
reduces probability infectious 

unit is viable
𝛼 ≪ 𝛽 is typical

Vaccine efficacy 𝑉𝐸𝑖𝑛𝑓 dose, CoP = 1 −
𝑃 infected dose, CoP

𝑃 infected dose, CoPmin

Dose-dependent vaccine efficacy
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small (linear 
dose regime)

𝑉𝐸𝑖𝑛𝑓 small dose, CoP ≈ 1 −
CoPmin

CoP

𝛾
VE is independent of exposure 

dose at small doses

VE if dose is 
small and VE 

isn’t small

logit 𝑉𝐸𝑖𝑛𝑓 small dose, CoP ≈ −𝛾log CoPmin + 𝛾log CoP

We’re back to Vaccinology 501: 
if doses are small, VE is 

independent of dose and logit in 
log CoP.



Recommendations to deal with dose-dependent 
immunity
• If you see different VE in cohorts with similar CoP responses, that’s a good clue 

you have large exposure and/or comorbidity variation among cohorts.

– R0 and VE against infection will typically be inversely correlated. 

– Large R0 variation all but guarantees variation in VE against infection for any 
pathogen.

• Even if you don’t have data on dose response, studying VE across settings can 
help you partially identify it. That’s something you can feed forward into the 
transmission parts of a model, to get an ecologically self-consistent model of 
transmission and vaccination.



In addition to correlates of protection, there are 
correlates of transmission.
• Given leaky immunity, amount shed typically varies with CoP

• Measure of shedding = Measure of shedding 𝑚𝑎𝑥 1 − 𝑘 log CoP𝑝𝑟𝑒

• Measures of shedding
– Duration
– Concentration excreted

• True for polio, COVID, flu…

• VE for transmission depends on individual correlates and transmission ecology, but 
this talk is already way too dense so we end this here. 
(Need to write a paper introducing this term and concept to the literature in a general way.)



4. Waning is never exponential
• Typical correlate rises rapidly upon immunization and falls (wanes)

over time

• Separation of timescales: unless modeling interaction of immune
response dynamics and infection, you can model this is a discrete
jump and continuous decay thereafter.

• Simplest dynamics 
𝑑

𝑑𝑡
CoP = −𝑤 ∗ CoP.   

Or CoP t = CoP𝑝𝑒𝑎𝑘 − CoP𝑚𝑖𝑛 𝑒−𝑤𝑡 + CoP𝑚𝑖𝑛
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4. Waning is never exponential
• Typical correlate rises rapidly upon immunization and falls (wanes)

over time

• Separation of timescales: unless modeling interaction of immune
response dynamics and infection, you can model this is a discrete
jump and continuous decay thereafter.

• Simplest dynamics 
𝑑

𝑑𝑡
CoP = −𝑤 ∗ CoP.   

Or CoP t = CoP𝑝𝑒𝑎𝑘 − CoP𝑚𝑖𝑛 𝑒−𝑤𝑡 + CoP𝑚𝑖𝑛

• Do you really believe every single B-cell/antibody/T-cell/cytokine/???
decays at the exact same rate? That there is zero long-term response? NO!

• A better model is thus CoP t = CoP(0)  𝑑𝑤 𝑃 𝑤 𝑒−𝑤𝑡. 

Assume 𝑃 𝑤  is Gamma-distributed because it’s easy and doesn’t much matter

CoP time 𝑡 since last immunization =

CoP𝑝𝑒𝑎𝑘 𝑡 < 𝜏𝑝𝑒𝑎𝑘

CoP𝑚𝑖𝑛 + CoP𝑝𝑒𝑎𝑘 − CoP𝑚𝑖𝑛 1 +
𝑡 − 𝜏𝑝𝑒𝑎𝑘

𝛼𝑇𝑑𝑒𝑐𝑎𝑦

−𝛼

𝑡 ≥ 𝜏𝑝𝑒𝑎𝑘



Recommendations for modeling waning
• The standard exponential model is actually a strong and biologically-unrealistic 

assumption (zero variation in cellular/molecular response (𝛼 = ∞), zero long-term 
adaptation)

• So you should always fit the power law in place of the exponential.

• With the follow-up durations in typical clinical trials, you may not be able to identify the 
dispersion parameter. In that case, based on surveying across some pathogens, you’re 
better off assuming 𝛼 ≈ 1.

• Polio 𝛼 = 0.9, COVID 𝛼 ≈ (0.7,1.1), (measles 𝛼 ≈ 0.07)

– Will match observed short-term dynamics, but very likely to better predict long-time 
behavior even in absence of data.

– Obviously, basing on data or calibration is best.



Modeling VE waning without a CoP

VE with a CoP logit 𝑉𝐸𝑜𝑢𝑡𝑐𝑜𝑚𝑒 = 𝛼 + 𝛽 log CoP

Time dependence of a CoP CoP time 𝑡 since last immunization =

CoP𝑝𝑒𝑎𝑘 𝑡 < 𝜏𝑝𝑒𝑎𝑘

CoP𝑝𝑒𝑎𝑘 1 +
𝑡 − 𝜏𝑝𝑒𝑎𝑘

𝛾𝑇𝑑𝑒𝑐𝑎𝑦

−𝛾

𝑡 ≥ 𝜏𝑝𝑒𝑎𝑘



Modeling VE waning without a CoP

VE with a CoP logit 𝑉𝐸𝑜𝑢𝑡𝑐𝑜𝑚𝑒 = 𝛼 + 𝛽 log CoP

Time dependence of a CoP CoP time 𝑡 since last immunization ≈

CoP𝑝𝑒𝑎𝑘 𝑡 < 𝜏𝑝𝑒𝑎𝑘

CoP𝑝𝑒𝑎𝑘 1 +
𝑡 − 𝜏𝑝𝑒𝑎𝑘

𝛾𝑇𝑑𝑒𝑐𝑎𝑦

−𝛾

𝑡 ≥ 𝜏𝑝𝑒𝑎𝑘

VE vs time with a CoP logit 𝑉𝐸𝑜𝑢𝑡𝑐𝑜𝑚𝑒 ≈ 𝛼 − 𝛽 log CoP𝑝𝑒𝑎𝑘 − 𝛽𝛾 log 1 +
𝑡

𝛾𝑇𝑑𝑒𝑐𝑎𝑦



Modeling VE waning without a CoP

VE with a CoP logit 𝑉𝐸𝑜𝑢𝑡𝑐𝑜𝑚𝑒 = 𝛼 + 𝛽 log CoP

Time dependence of a CoP CoP time 𝑡 since last immunization ≈

CoP𝑝𝑒𝑎𝑘 𝑡 < 𝜏𝑝𝑒𝑎𝑘

CoP𝑝𝑒𝑎𝑘 1 +
𝑡 − 𝜏𝑝𝑒𝑎𝑘

𝛾𝑇𝑑𝑒𝑐𝑎𝑦

−𝛾

𝑡 ≥ 𝜏𝑝𝑒𝑎𝑘

VE vs time with a CoP logit 𝑉𝐸𝑜𝑢𝑡𝑐𝑜𝑚𝑒 ≈ 𝛼 − 𝛽 log CoP𝑝𝑒𝑎𝑘 − 𝛽𝛾 log 1 +
𝑡

𝛾𝑇𝑑𝑒𝑐𝑎𝑦

VE vs time without a CoP
logit 𝑉𝐸𝑜𝑢𝑡𝑐𝑜𝑚𝑒 = ƴ𝛼 − ሖ𝛽 log 1 +

𝑡

ƴ𝛾

Nonlinear regression again, but an easy one



5. You probably don’t care about priming and boosting
• Example CoP response across the entire 

achievable range: poliovirus neutralizing 
antibody titer



5. You probably don’t care about priming and boosting
• Example CoP response across the entire 

achievable range: 

– poliovirus neutralizing antibody titer

Mean log
CoP𝑝𝑒𝑎𝑘

CoP𝑝𝑟𝑒
= 𝜇𝑜 1 −

log CoP𝑝𝑟𝑒

log CoP𝑚𝑎𝑥

sd log
CoP𝑝𝑒𝑎𝑘

CoP𝑝𝑟𝑒
= 𝜎𝑜 1 −

log CoP𝑝𝑟𝑒

log CoP𝑚𝑎𝑥



5. You probably don’t care about priming and boosting
• Example CoP response across the entire 

achievable range: 

– measles neutralizing antibody titer

Mean log
CoP𝑝𝑒𝑎𝑘

CoP𝑝𝑟𝑒
= 𝜇𝑜 1 −

log CoP𝑝𝑟𝑒

log CoP𝑚𝑎𝑥

sd log
CoP𝑝𝑒𝑎𝑘

CoP𝑝𝑟𝑒
= 𝜎𝑜 1 −

log CoP𝑝𝑟𝑒

log CoP𝑚𝑎𝑥

Wong et al unpublished



5. You probably don’t care about priming and boosting
• Example CoP response across the entire 

achievable range: 

– COVID neutralizing antibody titer from 
Pfizer mRNA vaccine

Mean log
CoP𝑝𝑒𝑎𝑘

CoP𝑝𝑟𝑒
= 𝜇𝑜 1 −

log CoP𝑝𝑟𝑒

log CoP𝑚𝑎𝑥

sd log
CoP𝑝𝑒𝑎𝑘

CoP𝑝𝑟𝑒
= 𝜎𝑜 1 −

log CoP𝑝𝑟𝑒

log CoP𝑚𝑎𝑥



5. You probably don’t care about priming and boosting
• Example CoP response across the entire 

achievable range: 

– Influenza HAI titer from live and 
inactivated vaccines

Mean log
CoP𝑝𝑒𝑎𝑘

CoP𝑝𝑟𝑒
= 𝜇𝑣𝑎𝑥 1 −

log CoP𝑝𝑟𝑒

log CoP𝑚𝑎𝑥

sd log
CoP𝑝𝑒𝑎𝑘

CoP𝑝𝑟𝑒
= 𝜎𝑣𝑎𝑥 1 −

log CoP𝑝𝑟𝑒

log CoP𝑚𝑎𝑥

Smith et al 1984

https://www.sciencedirect.com/science/article/abs/pii/S0022519384800107?via%3Dihub


5. You probably don’t care about priming and boosting
• At least for antibody-based CoP, there appears to be a universal model for CoP response across 

the entire range of achievable immunity

Mean log
CoP𝑝𝑒𝑎𝑘

CoP𝑝𝑟𝑒
= 𝜇𝑠𝑜𝑢𝑟𝑐𝑒 1 −

log CoP𝑝𝑟𝑒

log CoP𝑚𝑎𝑥

sd log
CoP𝑝𝑒𝑎𝑘

CoP𝑝𝑟𝑒
= 𝜎𝑠𝑜𝑢𝑟𝑐𝑒 1 −

log CoP𝑝𝑟𝑒

log CoP𝑚𝑎𝑥

CoP𝑚𝑎𝑥  is a property of the host immune system and the pathogen

- Shared across infection and different vaccine formulations and schedule

- If your CoP is a neutralizing antibody titer and your pathogen is a virus, probably CoP𝑚𝑎𝑥~214 = 104.2 
(works for polio, COVID, flu, RSV, measles)

𝜇𝑠𝑜𝑢𝑟𝑐𝑒  and 𝜎𝑠𝑜𝑢𝑟𝑐𝑒  are also properties of the immunizing source

- Fit separately for infection and each vaccine formulation you care about



Recommendations for modeling CoP response
• The mean CoP response is a two-parameter fit

– You can probably guess the max CoP from looking at peak values right after 
boosting in people with lots of prior immunity

– You can get the other parameter from a single trial

• This is super useful because now, with the waning model, you have a complete 
model of the immune response and level of protection for many populations

– Different immune histories and force of infection

– Revaccination vs first vaccination. How much will adding a dose when help?

• If you don’t have a CoP, you can fit the model with a latent CoP using VE 
measurements from 1 dose and 2 (or different schedules)



*Asterisk: waning rate may depend on CoP𝑝𝑒𝑎𝑘

CoP time 𝑡 since last immunization =
?

CoP𝑝𝑒𝑎𝑘 𝑡 < 𝜏𝑝𝑒𝑎𝑘

CoP𝑝𝑒𝑎𝑘 1 +
𝑡 − 𝜏𝑝𝑒𝑎𝑘

𝛼 𝑇𝑚𝑎𝑥 − Δ𝑇 1 −
log CoP𝑝𝑒𝑎𝑘

log CoP𝑚𝑎𝑥

−𝛼

𝑡 ≥ 𝜏𝑝𝑒𝑎𝑘

I only came to appreciate this 
figure yesterday and it’s the only 
figure of its kind I’ve seen so far.
We have COVID data to check, so 
I will be doing that.

3 weeks after vaccination
20 weeks after 



Examples VE vs time curves with one model: rotavirus (toy)

Mockup with Alicia. 
Real work still has to 
be done.

Low <5y mortality
High <5y mortality

Low <5y mortality

High <5y mortality



Examples VE vs time curves with one model: Polio



Summary
Vaccine efficacy for an 

endpoint is a composite
𝑉𝐸𝑠𝑦𝑚𝑝𝑡𝑜𝑚𝑠 = 1 − 1 − 𝑉𝐸𝑠𝑦𝑚𝑝|𝑖𝑛𝑓 1 − 𝑉𝐸𝑖𝑛𝑓

If you can safely assume 
VE>0

logit 𝑉𝐸𝑜𝑢𝑡𝑐𝑜𝑚𝑒 = 𝛼 + 𝛽 log CoP

Time dependence of a 
CoP

CoP time 𝑡 since last immunization =

CoP𝑝𝑒𝑎𝑘 𝑡 < 𝜏𝑝𝑒𝑎𝑘

CoP𝑚𝑖𝑛 + CoP𝑝𝑒𝑎𝑘 − CoP𝑚𝑖𝑛 1 +
𝑡 − 𝜏𝑝𝑒𝑎𝑘

𝛼𝑇𝑑𝑒𝑐𝑎𝑦

−𝛼

𝑡 ≥ 𝜏𝑝𝑒𝑎𝑘

Mean response of a CoP Mean log
CoP𝑝𝑒𝑎𝑘

CoP𝑝𝑟𝑒

= 𝜇𝑠𝑜𝑢𝑟𝑐𝑒 1 −
log CoP𝑝𝑟𝑒

log CoP𝑚𝑎𝑥

If force of infection is 
highly variable, think dose 

response

𝑉𝐸𝑖𝑛𝑓 dose, CoP = 1 −
𝑃 infected dose, CoP

𝑃 infected dose, CoPmin

Think through the biology and the data, complexify as you can, simplify as you must, 
propagate uncertainty, and advocate to measure important unknowns.
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