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Scope of today’s talk

We can usually do a lot better than binary SIRS for not much more effort, particularly for
disease with separations of timescales between infection and immune dynamics.

- any acute infectious disease (polio, measles, RSV, rotavirus, acute typhoid, covid, flu,
dengue...)

- Outcomes on different scales (HPV, TB, typhoid carriers, long-COVID, EBV->MS...)

Less applicable: anything where immune and pathogen dynamics interact and show
predator-prey-like dynamics on similar scales

- Malaria, HIV...

Not gonna talk about cross-immunity or host heterogeneity today



Key principles for better immunity modeling

Immunity always means multiple things

Protection is always a function of correlates, known or not
Almost all immunity is leaky

Waning is never exponential

You probably don’t care about priming and boosting

Lk wnheE
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Key principles for better immunity modeling

Immunity always means multiple things

Protection is always a function of correlates, known or not
Almost all immunity is leaky

Waning is never exponential

You probably don’t care about priming and boosting

Lk Wb

If you think through all this before running a model, your work will be better.
(Even if you end up doing the thing you usually do anyway.)

If you advise PST partners to expect more from modeling grantees, they’ll better
understand the anticipatable impacts and uncertainties in their strategies.



1. Immunity always means multiple things

* Immune to what?
— Infection
— symptoms
— hospitalization
— death
— carrier status
— long-term sequela
— transmitting if infected

e Why?
— Different outcomes are conditionally dependent on each other
— Different consequences in different body compartments
— Outcomes often depend on other covariates



Vaccine efficacy is many things

P(outcome|vaccinated)
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Vaccine Efficacy is
relative risk

reduction (in a population
with identical exposure)

VEoutcome =1 — RRoutcome
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Vaccine efficacy is many things

Relative Risk

Vaccine Efficacy is
relative risk

reduction (in a population
with identical exposure)

Conditional relative
risks multiply

P(outcome|vaccinated)

RRoutcome -

P(outcome|not vaccinated)

VEoutcome =1 — RRoutcome

P(symplinf,vax)P(infected|vax)

RR =
symptoms = p(symplinf,no vax) P(infected|not vax)

RRsymptoms = RRsymp|infRRinf

Vaccine efficacy for
an endpointis a
composite

VEsymptoms =1- (1 - VEsymp|inf)(1 - VEinf)

Efficacy against
infection is subtle

P(inflvax worked) P(vax worked|vax) + P(inf|no vax)(l — P(vax Workedlvax))
P(inf|no vax)

RRinf =

VEinf =1- RRinf




Vaccine efficacy modeling recommendations

Clinical trials often report only one endpoint, which is rarely the only endpoint
relevant for our work.

Use your knowledge of biology and the policy landscape to decide thoughtfully
— Can | safely assume the VE in my model is the one in the paper(s)?
— If not, do the data exist re-estimate VE appropriately for my needs?

— Either way, do | have to propagate the uncertainty in the unmeasured
aspects of vaccine protection to get the policy advising right?

Help your PST partners understand when types of VE not measured in a typical
clinical trial will matter when a successful vaccine is rolled out.

— Motivate better trials.



2. Protection is always a function of correlates, known
or not

Table 1. Terminology for Inmune Correlates of Protection Plotkin and Gilbert 2010
Term Synonyms Definition
CoP (correlate of protection) Predictor of protection An immune marker statistically correlated with

vaccine efficacy (equivalently predictive of
vaccine efficacy) that may or may not be a
mechanistic causal agent of protection®

mCoP (mechanistic correlate Causal agent of protection; A CoP that is mechanistically and causally
of protection) protective immune function responsible for protection

nCoP (nonmechanistic correlate Correlate of protection not causal; A CoP that is not a mechanistic causal agent
of protection) predictor of protection not causal of protection

@ A correlate of protection can be used to accurately predict the level of vaccine efficacy conferred to vaccine recipients (individuals or subgroups defined by the
immune marker level).

Correlates of Protection are always continuous quantities, and because immunity is always leaky, VE
always varies continuously with CoP.

Thus it is really annoying that most studies focus on thresholds of protection as a binary classifier.


https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9912984/

Example CoP: symptomatic COVID, AZ vaccine

Feng et al 2021
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https://www.nature.com/articles/s41591-021-01540-1

Modeling VE with a Correlate of Protection

VE can go negative.
Useful in studies since you have to
watch if the vaccine is harmful.

Vaccinology studies log(RR,ytcome) = @ — f3 log(CoP)
(UsuaHY) VEoutcome =1 — e%(CoP)~#
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Modeling VE with a Correlate of Protection

Vaccinology studies
(usually)

log(RRoutcome) =a-— ,3 log(CoP)
VEoutcome =1 — e“(cop)—ﬁ

VE can go negative.
Useful in studies since you have to
watch if the vaccine is harmful.

If you can safely
assume VE>0

logit(VEoutcome) =a+p 10g(COP)

VE bounded between 0 and 1. More
efficient statistically and correct
biologically if you know VE>0 always.

Vaccine efficacy for an
endpoint is a composite

VEqymp(CoP)
=1 (1 = VEqympjins (COP)) (1 = VE;ne(CoP))

Nonlinear regression, but more
correct over range of possible CoP

If you suspect the range
of possible VE is
narrower than 0 to 1
for any value of the CoP

VEoutcome

logit <
VEmax - VEmin

) = a + B log(CoP)

Probably already doing nonlinear
regression. But think carefully about
identifiability and if you’re not doing

something else wrong.

CoPs are imperfect.
Biology is weird sometimes.




Covid example where the
nonlinear regression helps

e Jamie Cohen etal 2023

e Conditional cascade fits to VE for infection, symptoms,
and severe disease

— Intercepts for vaccine and infection

e Useful things you don’t get if you just do independent
regressions

— Marginal efficacies for symptoms and severe disease
asymptote above 0, consistent with existence of
other as-yet-unidentified CoPs

— Waning models don’t go to zero for severe disease
(big problem with some others)

— No dumb arguments about “efficacy against severe
disease doesn’t wane” vs “no, it does!”
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https://ncbi.nlm.nih.gov/pmc/articles/PMC10015104/

3. Almost all immunity is leaky

* Immunity is almost always a function of dose.

* Itis almost always possible in principle to deliver a
big enough dose in the right way to overcome
immunity

e Binary ("sterilizing”) immunity is an approximation
whose validity depends on

— Setting

Force of infection, “vaccine take”, delivery,
cold chain, co-morbidities etc

— Time since vaccination (waning)

— Disease outcome being considered

fraction shedding
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Famulare et al 2016



https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.2002468

Recommendations to deal with leaky immunity

* If your thoughtful understanding of biology and policy says you can get away with it,
modeling immunity as binary is great.

* If you can’t get away with binary immunity, build a leaky model, fit it to data (more
ahead), and propagate policy-relevant uncertainty.



Recommendations to deal with leaky immunity

If your thoughtful understanding of biology and policy says you can get away with it,
modeling immunity as binary is great.

If you can’t get away with binary immunity, build a leaky model, fit it to data (more
ahead), and propagate policy-relevant uncertainty.

Observations: | haven’t done simulation studies (should! will?j), but
— binary with waning is often fine when modeling large pops without age structure

— A priori it’s a problem in highly-structured populations with complex immune
histories and contact patterns (like households)

You can be saved if VEi qnsmission|ins i high even if VE;, ¢ isn’t, but the
reliability of that implicit assumption is sensitive to contact patterns and FOI



Good default: approximate beta-Poisson with immunity

fraction shedding

Simplest
sensible dose
response model

/
/

o
)

fraction shedding
o
(@)

o
o

1 8 64 512 4096
OPV-equivalent antibody titer

P(infected|dose, COP) = p,,, 4 (1 — exp (—

—
1

—
<

10" 10° 10°
dose (CID50)

dose)) All infectious units and people
D are identical.



Good default: approximate beta-Poisson with immunity
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Modeling the effects of exposure dose on VE

Interpretation: infectious units

Dose response dose —a/(CoP)Y and people vary, and immunity
P > ) reduces probability infectious
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Modeling the effects of exposure dose on VE

Dose response
model

dose —a/(CoP)Y
P(infected|dose, COP) = ppax (1 — (1 + >

B

Interpretation: infectious units
and people vary, and immunity
reduces probability infectious
unit is viable
a K fis typical

Vaccine efficacy

VE if dose is

VE;ns(dose,CoP) = 1 —

P(infected|dose, CoP)

P(infected|dose, CoPy;jy,)

Dose-dependent vaccine efficacy

small (linear
dose regime)

VE if dose is
small and VE
isn’t small

CoPin\”
VE;ns(small dose, CoP) ~ 1 — (ﬁ)

logit (VEinf(small dose, CoP)) ~ —ylog(CoPy;,) + ylog(CoP)

Vaccine efficacy studies
(usually)

CoP

log(RRoutcome) = @ — 3 log(CoP)
VEqutcome = 1= e%(CoP)™#

If you can safely
assume VE>0

logit(VEpyicome) = a + B log(CoP)

VE is independent of exposure
dose at small doses

We’re back to Vaccinology 501:
if doses are small, VE is
independent of dose and logit in
log CoP.




Recommendations to deal with dose-dependent

Immunity

* |f you see different VE in cohorts with similar CoP responses, that’s a good clue
you have large exposure and/or comorbidity variation among cohorts.

— RO and VE against infection will typically be inversely correlated.
— Large RO variation all but guarantees variation in VE against infection for any
pathogen.

* Evenif you don’t have data on dose response, studying VE across settings can
help you partially identify it. That’s something you can feed forward into the
transmission parts of a model, to get an ecologically self-consistent model of

transmission and vaccination.



In addition to correlates of protection, there are
correlates of transmission.

* Given leaky immunity, amount shed typically varies with CoP

* (Measure of shedding) = (Measure of shedding),,,;» (1 —k log(CoPpre))

* Measures of shedding
— Duration
— Concentration excreted

* True for polio, COVID, flu...

* VE for transmission depends on individual correlates and transmission ecology, but
this talk is already way too dense so we end this here.

(Need to write a paper introducing this term and concept to the literature in a general way.)



4. Waning is never exponential

*  Typical correlate rises rapidly upon immunization and falls (wanes)
over time

*  Separation of timescales: unless modeling interaction of immune
response dynamics and infection, you can model this is a discrete
jump and continuous decay thereafter.

e Simplest dynamics % (CoP) = —w = CoP.

Or CoP(t) = (COPpear — COPyin)e ™t + CoPpin

correlate
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* Doyou really believe every single B-cell/antibody/T-cell/cytokine/??? time
decays at the exact same rate? That there is zero long-term response? NO!



4. Waning is never exponential

Typical correlate rises rapidly upon immunization and falls (wanes)
over time

(=]
Separation of timescales: unless modeling interaction of immune § 7]
response dynamics and infection, you can model this is a discrete -
jump and continuous decay thereafter. £ § _
o© —
Simplest dynamics % (CoP) = —w = CoP. S .
§ _
Or CoP(t) = (COPpear — COPyin)e ™t + CoPpin o -
Do you really believe every single B-cell/antibody/T-cell/cytokine/??? time

decays at the exact same rate? That there is zero long-term response? NO!

A better model is thus CoP(t) = CoP(0) [ dw P(w)e "¢,

Assume P(w) is Gamma-distributed because it’s easy and doesn’t much matter

CoP(time t since last immunization) = t — Tpeak -
COPpin + (COPpear — CoPpin) | 1 +—— t > Tpeak

ATgecay




Recommendations for modeling waning

The standard exponential model is actually a strong and biologically-unrealistic
assumption (zero variation in cellular/molecular response (@ = ), zero long-term
adaptation)

So you should always fit the power law in place of the exponential.

With the follow-up durations in typical clinical trials, you may not be able to identify the
dispersion parameter. In that case, based on surveying across some pathogens, you’re
better off assuming a = 1.

Polioa = 0.9, COVID a = (0.7,1.1), (measles a« = 0.07)

— Will match observed short-term dynamics, but very likely to better predict long-time
behavior even in absence of data.

— Obviously, basing on data or calibration is best.



Modeling VE waning without a CoP

VE with a CoP logit(VE,,tcome) = @ + B log(CoP)
COPpeak t < Tpeak
Time dependence of a CoP CoP(time t since last immunization) = t — Tpeak

COPpeak (1 + ) t = Tpeak

VTdecay
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Modeling VE waning without a CoP

VE with a CoP logit(VE,,tcome) = @ + B log(CoP)
COPpeak t < Tpeak
Time dependence of a CoP CoP(time t since last immunization) =~ t — Tpeak

COPpeak (1 + ) t> Tpoax

V7hecay

t
VE vs time with a CoP logit(VE,uicome) = @ — B 10g(CoPyeqr) — By log(l + T )
decay

) t
logit(VE,ytcome) = & — B log<1 +—,)
VE vs time without a CoP |4

Nonlinear regression again, but an easy one




5. You probably don’t care about priming and boosting

*  Example CoP response across the entire 40960

achievable range: poliovirus neutralizing 20480- :
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Ficure 1. Serum neutralization titers of previously immune individuals exposed to
reinfection in households of infeeted index children.



5. You probably don’t care about priming and boosting

Example CoP response across the entire
achievable range:

— poliovirus neutralizing antibody titer
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5. You probably don’t care about priming and boosting

Example CoP response across the entire

achievable range:

— measles neutralizing antibody titer

CoP.
Mean llog (ﬂ

CoPyye

B log(CoPpre)
)] ~Ho <1 "~ 10g(CoPyay)

CoP, log( CoP.
sd |log —_peak )| _ o, 1— g( pre)
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Wong et al unpublished




5. You probably don’t care about priming and boosting

* Example CoP response across the entire
achievable range:

— COVID neutralizing antibody titer from

Pfizer mRNA vaccine o 256 -
G
CoPyeak 10g(CoP re) 1)
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5. You probably don’t care about priming and boosting

Example CoP response across the entire

achievable range:

— Influenza HAI titer from live and

inactivated vaccines

CoP, k
Mean |lo ﬂ)] = (1
[ g < Coppre Hyax

log(CoPpre)
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F1G. 4. Immune response profiles for a live versus killed vaccine. The immune response
profiles for the live and killed forms of A/England vaccine are shown and are seen to be quite
distinct. The zero boost initial titer for each of the two forms is seen to be equivalent, however.
H—A, killed; * — *, live; O—0O, placebo.

Smith et al 1984



https://www.sciencedirect.com/science/article/abs/pii/S0022519384800107?via%3Dihub

5. You probably don’t care about priming and boosting

* At least for antibody-based CoP, there appears to be a universal model for CoP response across
the entire range of achievable immunity

CoP, log( CoP.
Mean [log< peak)] = Usource <1 g( pre) >

CoPpre " 1og(CoPyyay)
CoP. log(CoPy,)
peak _ _ g pre
sd [10g< CoPpre )] — Osource (1 log(CoPmax))

CoP,,, 4y is a property of the host immune system and the pathogen

- Shared across infection and different vaccine formulations and schedule

- Ifyour CoP is a neutralizing antibody titer and your pathogen is a virus, probably CoP,, 4, ~21* = 10%?2
(works for polio, COVID, flu, RSV, measles)

Usource ANd Ogource are also properties of the immunizing source

- Fit separately for infection and each vaccine formulation you care about



Recommendations for modeling CoP response

* The mean CoP response is a two-parameter fit

— You can probably guess the max CoP from looking at peak values right after
boosting in people with lots of prior immunity

— You can get the other parameter from a single trial

* This is super useful because now, with the waning model, you have a complete
model of the immune response and level of protection for many populations

— Different immune histories and force of infection
— Revaccination vs first vaccination. How much will adding a dose when help?

* |f you don’t have a CoP, you can fit the model with a latent CoP using VE
measurements from 1 dose and 2 (or different schedules)



*Asterisk: waning rate may depend on CoP, 4%
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Examples VE vs time curves with one model: rotavirus (toy)
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Real work still has to
be done.



Examples VE vs time curves with one model: Polio
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Summary

Vaccine efficacy for an

endpoint is a composite VEsymptoms = 1 = (1 B VESymp””f)(l B VEi"f)
If you can safely assume .
P e, 10git(V Egutcome) = & + B log(CoP)
) COPpeak t < Tpeak
Time dependence of a . . : . -a
CoP(time t since last immunization) = t — Tpeak
CoP COPin + (CoPyear — COPpin) ( 1 + ——— t > Tpear
ATaecay
CoP log( CoP,
Mean response of a CoP Mean llog <ﬂ>] = lsource < — M)
CoPye log(CoP,,45)
If force of infection is VE. (d CoP) = 1 P(infected|dose, CoP)
highly variable, think dose infREOSE RO = 2 7 pinfected| dose, CoPoyip)
response

Think through the biology and the data, complexify as you can, simplify as you must,
propagate uncertainty, and advocate to measure important unknowns.
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